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This paper develops a framework for analyzing and designing dynamic networks comprising different
classes of nodes that coexist and interact in one shared environment. We consider ad hoc (i.e., nodes can leave
the network unannounced, and no node has any global knowledge about the class identities of other nodes)
preferentially grown networks, where different classes of nodes are characterized by different sets of local
parameters used in the stochastic dynamics that all nodes in the network execute. We show that multiple
scale-free structures, one within each class of nodes, and with tunable power-law exponents (as determined by
the sets of parameters characterizing each class), emerge naturally in our model. Moreover, the coexistence of
the scale-free structures of the different classes of nodes can be captured by succinct phase diagrams, which
show a rich set of structures, including stable regions where different classes coexist in heavy-tailed (i.e., the
exponent is between 2 and 3) and light-tailed (i.e., the exponent is greater than 3) states, and sharp phase
transitions. The topology of the emergent networks is also shown to display a complex structure, akin to the
distribution of different components of an alloyed material; e.g., nodes with a light-tailed scale-free structure
get embedded to the outside of the network, and have most of their edges connected to nodes belonging to the
class with a heavy-tailed distribution. Finally, we show how the dynamics formulated in this paper will serve
as an essential part of ad hoc networking protocols, which can lead to the formation of robust and efficiently
searchable networks [including, the well-known peer-to-peer networks] even under very dynamic conditions.
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I. INTRODUCTION

A. Motivation

Real networks are rarely homogeneous, and often com-
prise different categories of constituent nodes, all of which
interact and coexist in a single global environment. The clas-
sification of nodes in such networks might be based on dif-
ferent characteristics, including diverse functionalities, dif-
ferent objectives and scale of resources, and different types
and degrees of dynamics inherent to the nodes. Examples
include different cell types in a neural network, different
roles in the web of English words (e.g., verbs, nouns, and
adjectives), different disciplines in the network of scientific
collaborations, various switch types (routers, hubs, etc.) in
the Internet, and the different node types in a peer-to-peer
(P2P) network (e.g., nodes with 56 kbaud modem connec-
tions vs nodes with DSL connections). Empirical evidence of
class-specific hierarchical and scale-free structures in many
complex networks have become available only recently [1].
For example, a heterogeneous scenario has been reported in
the network of scientific citations: While the overall structure
of such networks is believed to have a power-law (PL) de-
gree distribution [2] with exponent y=3, the network of
citations restricted to theoretical physicists is somewhat more
heavy tailed with an exponent around y~2.6 [3].

The objective of this paper is to explore the dynamics of
such heterogeneous networks, and study how different types
of nodes influence each other and when and how multiple
scale-free structures may emerge in the networks. We find
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that the interacting sets of different classes of nodes can give
rise to a complex global structure and display a rich set of
emergent properties. In particular, we show that (i) viewing
complex systems as networks with different evolving and
interacting constituent subnetworks helps provide a better
understanding about the role of each class of nodes in the
overall network, and sheds light on how different networks
with nested structures might have evolved, and (ii) the re-
sults can lead to the systematic design of heterogeneous net-
works, where different categories of nodes evolve to have
different scale-free structures (corresponding to their capa-
bilities and intentions).

B. Dynamical model

We consider ad hoc dynamical networks, where in addi-
tion to nodes joining the network, nodes also disconnect and
leave the network randomly at certain rates. Moreover, nodes
are allowed to respond to their environment, and can initiate
new random connections if their existing connections are
lost. The dynamical rules studied in this paper have been
picked from those traditionally studied in the context of com-
plex networks. For example, in all the protocols studied in
this paper all connections are initiated by choosing nodes in
a linear preferential manner. Similarly, the other dynamics
that we incorporate are joining of new nodes, random dele-
tion of existing nodes, and compensatory rewiring by exist-
ing nodes that might have lost an edge because of the dele-
tion dynamics. As described next, the different classes of
nodes in the network follow the same global dynamics, ex-
cept with different parameters. Additionally, to be true to the
ad hoc nature of our model, we enforce that the class identity
of a node is not a global knowledge; instead, a node’s iden-
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tity is expressed only through its own dynamics and actions,
i.e., in how it responds to and initiates contacts with other
nodes in the network. Thus, a node on joining the network
makes requests for connection without any global knowledge
about the properties of other nodes in the network, and the
connection requests are made following the traditional pref-
erential attachment rule.

Modeling heterogeneity of nodes. The different classes of
nodes are characterized by the different sets of parameters
they adopt in responding to connection requests and also in
executing local dynamics. The most important local param-
eters used in this paper to capture heterogeneity of nodes are
as follows: (i) Attraction or attachment, i.e., a node’s will-
ingness to accept a requested connection; this can be param-
etrized by the probability d, with which the nodes in the g™
class accept a connection request. (ii) Stability, i.e., how long
the nodes stay in the network before dropping out or deleting
themselves; this can be parametrized by the probability c,
with which a randomly picked node in the g™ class gets
deleted at each time step. (iii) Responsiveness, i.e., a node’s
ability to respond to lost or dead connections and compen-
sate for them with new connection; this can be parametrized
by the probability n, with which a node in the g™ class
compensates for any lost or inactive connection. (iv) Repre-
sentation or relative population, i.e., what percentage of the
nodes joining the network belong to a specific class; this can
be parameterized by the probability s, with which a node
joining the network is from the ¢ class. In general, the
different categories of nodes in a network may differ in all
four of these parameters.

C. Approach and preview of results

We are interested in finding P,(k), the degree distributions
within each of the subclasses. P,(k) is the probability of a
randomly chosen node of type ¢ to have degree k; note that
all edges, both intracommunity and intercommunity edges,
contribute to the degree of a node. In particular, we will
show the emergence of scale-free degree distributions within
each class, that is, Pq(k) o« k™%, In general, for a given set of
0O classes, the PL exponent vy, of the g™ class is a function of
all four sets of parameters. That is, in general we have

¥,=f(D,C.N,S) forallg=1,...,0,

where D={d1,...,dQ}, C={C1,...,CQ}, N={}’l1,...,f’lQ}, and
S={sy,....50}, are the sets of attachment, stability, respon-
siveness, and representation parameters for the Q different
classes of nodes. We apply the continuous-time rate-equation
approach to study the dynamics and derive y,’s. The coex-
istence of different classes of networks will impose certain
constraints on the set of y,’s emerging in the subclasses, and
hence, only certain sets of vy,’s for a given choice of the
dynamical parameters are feasible.

As discussed in Sec. 1V, it is always possible to compute
the y,’s numerically using the rate-equation approach. An
exact closed form computation of the various PL exponents
(as a function of the different sets of parameters), however, is
difficult to obtain when the classes are heterogeneous with
respect to all the local parameters. Hence, to develop intu-
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ition and to better understand the heterogeneous systems, we
study special cases where it is possible to obtain exact for-
mulas for the computation of vy,’s. For example, in Sec. III
we study the case where the sets are heterogeneous over only
the sets D and S, i.e., the q‘h class has attachment rate dq and
relative population s,. Moreover, we allow deletions of ran-
dom nodes at an overall rate of ¢ (i.e., the deletion rate of the
g™ class is given as cg=cXs,, and cannot be set indepen-
dently), and no compensation, i.e., ny=ny=---=ny=0. Egs.
(3) and (5) provide the exact formula for y,’s for this par-
ticular model. Interesting features include the following: (i)
Coupled PL exponents: The average PL degree is constrained
to be greater than 3. Thus for example, for Q=2, one class
can have PL exponent <3, while the other one has to have an
exponent greater than 3. Recall that if Q=1 and c=0, it is
exactly the case of linear preferential attachment, and the
exponent is exactly equal to 3. Hence, by having multiple
classes, one can have classes that have heavy-tailed PL de-
gree distributions (i.e., an exponent less than 3), even with
the linear preferential attachment kernel. In general, for dif-
ferent ¢’s the possible PL exponents (7y;,v,) are plotted in
Fig. 2. (ii) Role of the deletion rate c: If Q=1 then it is
shown in [4] that for any deletion rate ¢ >0, the PL exponent
is >3, and that the exponent increases rapidly with an in-
crease in c. As shown in Fig. 2, for two classes it is possible
to have one class with PL exponent less than 3. However,
there is always a deletion rate for which both the exponents
become greater than 3. Thus, the heterogeneity of the net-
work can lead to rich structures, which otherwise do not exist
in homogeneous networks. The more general case, where we
vary three sets of parameters, C, N, S, while the attachment
rates are considered to be unity for all the classes, i.e., d;
=-=dp=1, is considered in Sec. IV. It is best to describe
the results in terms of a phase space, where the state of a
class can be attributed as described in the following section.
Another means of studying the networks is to look at the
embedding of the different classes of nodes in the overall
structure. Both of these macroscopic approaches and related
results are summarized.

Emergence and coexistence of phases. The degree distri-
bution of a particular category of node could be classified
into the following phases or states, depending on the expo-
nent, vy, of its PL distribution: (i) Heavy tailed: 2 < y<3; for
such a distribution, the variance becomes unbounded while
the mean remains bounded. It is in this regime that the cor-
responding network shows a number of advantageous prop-
erties, such as almost-constant diameter, efficiently search-
able, and resistance to random deletions of nodes and edges.
(ii) Light tailed: y>3. (iii) Unstable: 0 < y<2; this is when
the average degree becomes unbounded. (iv) Extinction:
When the average degree goes to zero, i.e., the nodes belong-
ing to this class get disconnected from the rest. Clearly, one
can make a finer division of the range of the PL exponent
and define a larger number of phases.

We investigate issues related to how the different catego-
ries of nodes can be in different phases as a function of the
parameters of the dynamics. Also, how will a phase transi-
tion within one subclass (e.g., from a heavy- to a light-tailed
phase) affect the phase of the other classes? As shown in Sec.
V, we find that the rich set of solutions of the dynamical
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model introduced in this paper can be captured by succinct
phase diagrams, which show the coexistence of different
phases of different categories of nodes, as a function of the
parameters. The results show that the phase space shows all
the hallmarks of a rich heterogeneous system, including the
following.

(i) Stable regions where different categories of nodes can
be in different desired phases (e.g., certain classes in the
heavy-tailed phase, while certain others are in the light-tailed
phase). These regions have sufficient volume/area so that the
resulting degree distributions are fairly insensitive to the ex-
act choice of the different parameters; see simulation results
in Sec. V.

(ii) Regions in the phase space, corresponding to exhaus-
tive combinations of phases that the different classes of
nodes can exist, emerge quite naturally. For example, Fig. 3
shows that all four possible combinations of light- and
heavy-tailed phases of two categories of nodes are possible.

(iii) The parameter space has boundaries showing sharp
phase transitions. This can allow abrupt transformations and
manipulations of underlying network topology by changing
the dynamical parameters only marginally.

Topology of the heterogeneous networks. We address is-
sues related to how the different categories of nodes get em-
bedded in the network. For example, where in the network
do nodes of different classes migrate to? When a particular
class of nodes is in the light-tailed phase, are the correspond-
ing nodes on the outer edge of the network, in the sense that
most of the node’s connections are to the nodes outside its
own class, or is the node in the core of the network? Simi-
larly, almost all complex networks happen to have small di-
ameters, meaning that there is a short path from any node to
any other node. How many of those paths pass through a
given class of nodes?

We find that instead of nodes segregating into clusters of
their own, they get embedded in the network in such a fash-
ion so that nodes belonging to classes with light-tailed de-
gree distributions are connected via a core comprised of
nodes belonging to the heavy-tailed classes. This gives rise
to global hierarchical networks, where the nodes can choose
their position and functionality by controlling a set of well-
defined parameters. For example, we define a parameter
called the capacity, which is the ratio of all edges with both
end points in a particular class, and the total number of edges
with any of its end points in the same class. Then as shown
in Fig. 7 one can vary the relative capacities of the different
classes by varying the different parameters. In general, the
results show that when a class has a high exponent, its ca-
pacity is low, and as the exponent decreases, the capacity
increases.

D. Implications: discovering and modeling complex dynamics

An example of how the study of heterogeneous networks
may influence our understanding of mechanisms underlying
a given network is given in Fig. 1. It is well known that in a
growing network the standard linear preferential attachment
is dynamic, where nodes joining a network make connec-
tions to existing nodes with probability proportional to their
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FIG. 1. (Color online) An example of a grown heterogeneous
network with multiple scale-free structures. The network comprises
two classes of nodes, and nodes in both classes follow the same
overall preferential dynamics: When joining the network, every
node selects target nodes preferentially until a total of m preferential
connections are made. The only deviation from the well-known
preferential dynamics is that if a preferentially chosen node refuses
a connection request, then the requesting node makes another inde-
pendent preferential selection and repeats the process until a request
is accepted. The dynamical rule differentiating the two classes is
that while type-1 nodes always accept all the connection requests
(d;=1), type-2 nodes randomly accept only half the requests (d,
=0.5). The two classes have equal representation, i.e., s;=s,=0.5.
As shown in the degree distribution plots, this dynamic leads to two
distinct scaling features: a heavy-tailed degree distribution, vy,
~2.54, for type 1 (squares), and a light-tailed distribution, 7y,
~3.54, for type 2. Interestingly, the overall degree distribution
(circles) closely resembles the degree distribution of type-1 nodes,
and hence, if the nodes are not differentiated, then the whole net-
work will be characterized by a single scaling parameter, y=2.54.
In general, single scaling parameter characterizations of heteroge-
neous networks will always hide the structure of all the classes of
nodes, except that of the most heavy-tailed one. Consider the case
of a network consisting of two classes of nodes, A and B, with PL
exponents y, and vy, respectively. If y, < yp, then the overall de-
gree distribution is P(k) ~k™7A+k™"B~k~YA when k> 1.

degrees, and leads to a degree distribution with an exponent
y=3, which marks the boundary between a heavy-tailed and
light-tailed distribution. The striking characteristics of
heavy-tailed degree distributions are observed only for expo-
nents <3, and most documented networks display these scal-
ings. In order to account for such widespread emergence of
prominent scale-free structures, several alternate network dy-
namics and protocols (e.g., doubly preferential attachment)
[5-10], which lead to a continuum of possible power-law
exponents from y=2 to %, have been introduced.

Does the presence of an exponent y<<3 mean that one of
the alternate mechanisms is at work? As illustrated in Fig. 1,
the presence of a heavy-tailed degree distribution need not
necessarily imply that the simple linear preferential attach-
ment is not at play. Indeed, a PL degree distribution with
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exponent <3 can result from the standard linear preferential
attachment dynamic if the network, for example, has two
classes of nodes with varying acceptance or attachment rates.
In this example, a node joining a network still makes glo-
bally preferential links, except that when the request reaches
one of the classes, it rejects the request with probability 1/2
while the other class always accepts a connection request.
From a mechanism perspective, if one did not view this as a
heterogeneous network, then one might be misled to infer
that the underlying dynamic was something other than the
standard preferential attachment.

E. Implications: designer complex networks

In terms of explicitly designing heterogeneous dynamic
networks, an example of great practical interest is the class
of ad hoc distributed systems, with peer-to-peer (P2P)
content-sharing networks as a prime example. As discussed
in more detail in Sec. VI, a P2P network has heterogeneous
sets of nodes with varying lifetimes and bandwidth capabili-
ties. A natural question is how to design local dynamics such
that an overall scale-free structure will emerge, where each
node category has a distribution that suits its available re-
sources and needs. We add an additional stringent design
constraint: A node joining the network has no global knowl-
edge of which nodes belong to which category, and it can
only explore the network locally and only request connec-
tions to nodes that it can reach. The dynamics introduced in
this paper provide a systematic solution to this challenging
problem.

The primary motivations for designing local dynamics so
that a PL topology emerges are as follows: (i) PL networks
are resistant to random deletions and have vanishingly small
percolation thresholds [11]; (ii) PL networks have a natural
hierarchy allowing more capable processors to act as hubs,
and moreover, computing resources are heterogeneous to be-
gin with and PL networks provide a natural setup for the
resource hierarchy to be embedded into a networking hierar-
chy; and (iii) the structure of PL networks can be exploited
to provide scalable keywords-based search capabilities
[12-14]. While these properties of PL networks have been
proven to be true for random PL networks, our recent results
show that the grown random networks generated using the
local dynamics formulated in this paper (particularly, the ad
hoc dynamics, where nodes randomly leave the network)
lead to networks that are much closer to random PL graphs
than those generated by previously proposed algorithms
[15,16].

F. Prior work

Previously known dynamical models have mainly charac-
terized the scale-free structure of the emergent networks with
a single state (manifested by the overall power-law expo-
nent). Nonuniform preference kernels and their effect on the
overall power-law exponent of the emerging network has
been considered before in the context of fitness models. In
[17], a node-dependent preferential attachment kernel is in-
troduced. As a new node i enters the network, it is assigned
a fitness factor 7; randomly drawn from some distribution.
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The probability of the node i receiving a new connection
when its current degree is k; will be proportional to 7k;.

The argument is that different nodes in the network can
have different inherent attractions. As such, a new node with
a high fitness can gain more connections over time compared
to an old node with a smaller fitness. This can explain, for
instance, the high connectivity of some new pages on the
Internet. The authors then derive the overall degree distribu-
tion as a function of the distribution of the #,’s. The same
multiplicative fitness mode is adopted in [ 18] for the case of
directed preferentially grown graphs. In particular, it is
shown that even a single node with a high fitness can acquire
almost all the links in the network over time, corresponding
to a condensation to a starlike topology. The work of [18]
also considers the case of the mixture of two “weak” and
“strong” classes which closely relates to the model consid-
ered in this paper when Q=2 and c=0.

G. Organization of the paper

The rest of the paper is organized as follows. In Sec. II we
describe a dynamical model of the networks considered in
this paper. We formally introduce the four parameters that
can be used to characterize the different categories of nodes.
In general, all four of these parameters could be nonuniform
over the classes of nodes in the network. However, for the
sake of analysis and also understanding the roles of different
dynamics in determining the emergence of scale-free struc-
tures, we study cases where only one or two of these param-
eters are nonuniform over the nodes in the network, and the
others are held uniform. For example, in Sec. III we first
analyze the model by considering the effects of only attrac-
tions and representations, as these parameters are varied for
different classes of nodes. Moreover, we consider a dynamic
ad hoc network, where nodes both join and leave the net-
work. In Sec. IV we solve the model for the case of uniform
attractions but heterogeneous stability, responsiveness, and
representation properties. We are interested in explicitly
tracking the structure of each subclass and investigating the
fundamental constraints that the intraclass interactions of a
particular class will impose on its emerging structure. Of
particular interest is the coexistence of different phases in
different classes. In Sec. V we explicitly address this issue
and look at the structure of the phase space, and phase tran-
sitions that occur. In particular, we are interested in the
heavy- and light-tailed degree distributions of subnetworks.
Concluding remarks and applications of the dynamic rules
investigated in this paper to the design of P2P networks are
provided in Sec. VL.

II. MODEL PARAMETERS

A list of the parameters and variables used in this paper,
along with their definitions, can be found in Table I
Throughout this paper, g € {1,2,...,0} will represent the
type or class or category (all three terms are used inter-
changeably) of a node in a network in which nodes can be-
long to one of Q different classes.

The dynamics for network evolution considered in this
paper can be summarized as follows.
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TABLE 1. Nomenclature.

Variable Definition Relation

0 The number of different types of nodes

qge{l,2,...,0} Denotes a particular class

m The number of links per newly inserted node

Sq The fraction of nodes of type g, per newly 2,5,=1
inserted node

c The fraction of nodes deleted per an inserted
node

(oA The fraction of nodes of type g deleted per an chq—c
inserted node

d, The probability that a node of type g accepts a
request for connection

m, The probability of requesting a node of class ¢ my=L(t;q)/L(1)
for connection

3, The probability of a new link to be finally 6q=quq/219=1(mpdp)
connected to a node of class ¢

L(t;q) The sum of the degree of all nodes of type
q [Sik(i.t:q)]

L(?) The sum of the degree of all nodes in the L(n=%,L(t:q)
network (twice the number of all links)

k(i,t;q) The degree of a node i of type ¢ at time step ¢

D(i,t;q) The probability that a node of type ¢ inserted at D(i,t;q)= (/i) 5¢q)
time i is still in the network at time ¢

Yy The power-law exponent of the scale-free degree

distribution in class g [p,(k) % k™"]

(i) Addition of nodes. At each time step, a new node is
introduced into the network; the new node can belong to any
of the Q different classes or types indexed by an integer ¢
=1,2,...,0. The probability of the new node being of type g
is assumed to be s,, where 2 s,=1.

(ii) Creation of links. The new node, inserted at time step
t, then makes m connections by picking nodes preferentially
using the well-known linear kernel. Target nodes, however,
can refuse requests for connections, and hence, the new node
performs the following procedure m times: It chooses a node
preferentially; thus the probability of choosing a node i in the
g™ class is k(i,t;q)/2; k(j,t;p) where k(i,t;q) is the degree
of the ith node in class g, at time step ¢ (see Table I). The
new node then sends a connection request to this selected
candidate. The candidate node i will accept the connection
with probability d, depending on its type g. If the connection
is refused, then the new node has to repeat the process until
it finds a node that accepts a new connection.

(iii) Deletion of nodes. At each time step, for each class
g=1,2,...,0 arandomly selected node of type ¢ and all its
links are deleted with probability c,. Thus, the total deletion
rate is c:Ei%lcq< 1.

(iv) Compensation for lost edges. If a node loses a link
due to deletion of one of its neighbors, a node of type g will
introduce n, new links following the same linear preferential
procedure outlined above in (ii).

An important characteristic of this model is that it is local
and private in the sense that only a node itself, and not the
other members including the nodes trying to connect to it,
has any knowledge about its type.

The parameters Sqs dq, Cqo and n, thus represent the het-
erogeneity in the population, attraction/attachment, stability,
and responsiveness dynamics that characterize the different
categories of nodes as follows: (i) Nonuniform attraction
(d,): Different categories of nodes might have different de-
grees of attraction (also known as fitness in [7]) that can
influence the structure of all the classes. That is, one class of
nodes might be more willing to accept the requests for new
connections than the others. (ii) Nonuniform stability (c,):
The degree of stability of the nodes in different classes might
be different. In an ad hoc network, where nodes can join and
leave the network, some classes of nodes might be inherently
more stable than others. Those classes, by virtue of the fact
that they would stay longer periods of time in the network,
will tend to acquire larger fractions of the connections and
usually tend to become more heavy tailed. The interaction of
the classes of “older” nodes and the class of “fresh” nodes is
fairly interesting. The phases of the subnetworks can be
tracked separately, for instance, to determine the situations in
which the subnetwork of “old” nodes will acquire almost all
the links of the network. (iii) Nonuniform responsiveness
(ng): The degree of responsiveness of different sets of nodes
to changes in the network might be different. We examine
the effects of heterogenous compensation magnitudes for the
lost links. In a compensation mechanism as introduced in [4],
a node will react to losing a neighbor by initiating a number
of new connections to compensate for its lost links. The
number of such compensatory connections is an indication of
the degree with which the node responds to its changes. We
show that the different degrees of responsiveness in different
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classes will influence the structure of other classes and the
overall network. (iv) Nonuniform population size ( sqand cg):
As stated in Table I, the number of nodes of type ¢ at time ¢
in the network is given by N(¢;q)=(s,—c,)t. Hence, by vary-
ing s, and ¢, the proportions of different classes of nodes can
be varied. In the special case of two classes one can define a
majority and a minority class, and then study the effect of the
relative populations of the different classes on the PL expo-
nent of the degree distributions of each class. We derive in
Secs. III and IV the role that sizes of the majority and mi-
nority classes play in determining the overall network struc-
ture.

III. NONUNIFORM ATTRACTION AND POPULATION

We consider the case where the different classes are char-
acterized by different values of d, (acceptance probability)
and s, (population size). We assume that there is no compen-
sation, i.e., ny=n,=---=nyp=0, and that the deletions of
nodes are made uniformly over all the classes, i.e., ¢,=c
Xs,. Note that the homogeneous case, where there is only
one class, i.e., |Q|=1, was solved in [4]. Let ir,, be the set of
all nodes of type ¢ that are present in the network at time ¢.
When a new link chooses a node i € irg for connection, i can
accept the attachment with some probability ¢, and deny the
attachment with probability 1-d,. Once denied, the new link
will have to repeat the process to choose another target node
for connection.

We first provide the following reduction: The protocol for
selecting target nodes globally preferentially, until a node is
found that accepts the connection, is equivalent to first se-
lecting a class ¢ with probability &,, and then making a con-
nection to the i™ node in the class with probability propor-
tional to its degree as normalized with respect to the sum of
the degrees of all nodes only in the ¢ class, i.e., the prob-
ability that the i node in class ¢ will receive an edge is
Ok(i,t;q)/L(t;q), where L(t;q) is the sum of the degrees of
nodes in class g (see Table I). In the equivalent protocol, the
process of acceptance and denial is captured by the param-
eter 6,=f(d,,s,), which is the steady-state probability of the
new link being finally connected to a node of type ¢g; the
relationship among 6, d,, s, is derived later in this section.
The modified protocol is derived to make our analysis sim-
pler.

Next we prove the equivalence of the modified protocol
(where the incoming node needs to select a class first, and
hence, requires global knowledge) to the original protocol
(where the incoming node has no knowledge of the different
class). Let A, be the event that a node of type ¢ is the end
node of a successful link attempt, and hence, p(A,)
=L(t;q)/L(t)=m,, and C;, be the event that a node i of type
q is requested for a connection. Then,

p(a new link is established|C;,,) = d,,,
and p(C;.,)=k(i,t;q)/L(t). Also,
planew link is established) = X2 m,d,,

and we are interested in p(C,-;q|a new link is made). Using
Bayes’s rule, we get
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p(C;,|a new link is made)

p(anew link is established|C;.,)p(C;.,)

p(a new link is established)

_ dgkGit;q)

(9]
L(t)(E m,,d,,)
p=1

_dymy k(i,t;q)
L(t;q)

-0
by myd,,
p=1

_ k.rq)
L)

The expressions for L(t;g) and m, are derived later in this
section.

The continuous rate-equation approach [4,19] can now be
employed to track k(i,z;q), at a time =1 in the equivalent
protocol

(1)

ok(i,t;q) mok(it;g)  k(it;q)
i Lig SN0 2

where the first term represents the fraction of new links that
the ith node of type g gets due to the addition of m new links
at each step [see Eq. (1)], and the second term represents the
fraction of edges lost due to the deletion of a randomly
picked node at each time step. Note that, in general N(¢;q)
=(s,—c,)t, and since in the case of uniform deletion c,=c
X5, we get N(t;q)=s,(1-c)t. Similarly, a rate equation for
L(t;q) can be written as

JL(t;q) L(t;q) L(1)
Tq=m(5q+sq)—cL(t;q)/N(t)—chm
2
=m(8,+5,) = L) _cc)t. 3)

The first term in Eq. (3) captures the following dynamic: A
new node brings m links to the network. With probability s,
this new node is of type ¢ and with probability &, one of its
ends will be connected to a node of type g. The second term
in Eq. (3) captures the following dynamic: When a node is
deleted, it might be of type g with probability N(z;q)/N(7),
and the class g will lose an average of L(¢;¢q)/N(q,t) links,
resulting in an average contribution to L(z;q) of
—c[N(t;q)/N(t)|L(t;q)/N(t;q)=—cL(t;q)/N(t). The third
term in Eq. (3) corresponds to the links that nodes of class ¢
lose due to their neighbors being deleted: When a node is
deleted, an average number of L(z)/N(r) edges are deleted;
now the fraction of these edges that are connected to nodes
of type ¢ is L(t;q)/L(z).
L(t;q) is then found to be

1_
Lt:q) =m(5, + sq)ﬁt. 4)

Inserting Eq. (4) back into Eq. (2) we get
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Ik(i,t3q)  Sk(it;q)(1+c)  k(itiq) (8, — s )k(ist;q)
o (,+s)(0-0) (-0 (8+s)0-0o)n’

which implies k(i,#;q)=m(t/i)P4 for

By=(8,—cs,)/(1=c)(5,+5s,).

Next, using the relationship (y—1)B8=1/(1-c) developed in
[4] we get

o, +
1= (_q_sq_) (5)

5q —cs,

Yq

At this point, we can make several observations about the
coexistence of different phases for the different classes of
nodes and the achievability of different exponents for the
different classes by varying the attraction rates.

A. Tuning exponents y,’s and attraction probabilities d,’s

Recall that in Eq. (1) we derived the following relation-
ship:

=5 > (6)
> myd,,
p=1

where m,=L(t;q)/L(t). Note that L()=X,L(t;q)=mi(1
—c)/(1+c), and hence using the result of Eq. (4), we get
my=L(t;q)/L(t)=(6,+s,), which gives
d,(5,+s,)
__ Y%7
q— . (7)
2 (5(]’ + Sq')dq’
q’

Given d, s,, for g=1,2,...,0, Eq. (7) defines Q equations
which can be solved for the Q unknowns 5q. Thus, without
loss of generality, we may assume that §,’s are known and
unique for any given set of d,’s and s,’s. Hence, we can
uniquely find 7y,’s for a fixed set of d,s, s,’s, and c.
Conversely, for a fixed set of 6q’s and sq’s, the set of
equations in (7) is linear in d, (multiplying by the numerator
of the right-hand side). Arbitrarily normalizing d,’s to define
a new set of variables d,=d,/d,, the d;’s can be found by
solving the following linear system of Q—1 equations

o
2 (8 + 5,08, = 1,4) =0,
q'=1

for g=2,3,...,0 and setting d{:l. The above system of
equations is easily shown to be nonsingular if and only if
5q+sq>0 for all g=1,2,...,0Q. In fact the determinant of the
system of equations is easily shown to be Hg=2(5q+sq). This
shows the existence of attraction probabilities d, such that
any set of power-law exponents as constrained by Egs. (3)
and (5) can be achieved.

B. Codependencies of the feasible PL exponents
for different classes

As discussed above, by sweeping over the parameters s,’s
and d,’s one can effect a continuum of power-law exponents
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Y,’s, as determined by Egs. (5) and (7). The set of possible
¥,'s are, however, coupled through the requirement that
2,0,=2,5,=1. As an example, one can define two average
quantities involving the power-law exponents

Q 0

Enode(‘)/) = 2 SqY0 and Elink(’)’) = E 2_1(5(] + sq) Yq»
g=1 gq=1

(8)

where E,;, captures the fact that the averaging is taken over
randomly chosen nodes (i.e., the probability that the class of
a randomly chosen node has exponent vy, is s,), and Ej
captures the fact that the averaging is done over random end
points of a randomly chosen edge, i.e., the probability that a
random end point of a randomly chosen edge belongs to the
gth class is (8,+s,)/2. Now it follows from Eq. (5) that

o
E((y=1 =2 2718, +5,)(y,- )7 = (1 - 0)/2.
gq=1

)

For the special case of no deletion (c=0) it follows from (5)
that

[
Enz)de((y_ 2)_1) = 2 (74 - 2)_15(] =1.
g=1

The convexity of the function f(x)=1/x,

Eppid(y=2)"Y = (Epudt-2)" =1,

or E,,;.{v}=3. In other words, on average the communities
of the nodes have power-law exponents greater than 3. On
the other hand, this also implies that even for the simple
preferential attachment, heterogeneity can lead to an overall
degree distribution with exponent <<3.

When Q=2, the two exponents y,(d;,d,), y,(d,,d,) can
be explicitly found as functions of d;, d,. By eliminating
d,, d,, the set of possible power-law exponent pairs (7;, ;)
can be derived. An example of this is depicted in Fig. 2 for
5;=0.8, 5,=0.2 for different values of c. To interpret the as-
ymptotes, first note that from (5), stable network operation is
only possible when &,>cs,; otherwise the class g will be-
come extinct (i.e., will lose all its links). Take the first class
for instance: Since &,>cs,, then §,=1-6,<l-cs,=1-c
+cs;, which results in y;=1+(1—c+csy+s;)/(1-cs,—csy)
=2+s,(1+c)/(1-c). The same bound can be found for class
2 as well. Some of these asymptotes are also depicted in Fig.
2.

C. Role of deletion rate ¢

It was shown in [4] that when |Q|=1, i.e., there is only
one class and the network is homogeneous, then 7y is always
greater than 3 for any deletion rate ¢ > (0. Moreover, even for
small values of ¢ the exponent becomes quite large, and the
network shows none of the characteristics associated with
heavy-tailed PL degree distributions. In the case of heteroge-
neous networks, however, one can have a class with a true
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FIG. 2. (Color online) Possible power-law exponents in a net-
work with two classes of nodes. vy, is the power-law exponent of the
degree distribution of the first class that consists of 80% of all
nodes, while 7y, corresponds to the second class consisting of 20%
of all nodes. The possible power-law exponents for three deletion
rates ¢=0,0.2,0.4. The asymptotes for ¢=0 and ¢=0.2 are also
depicted.

heavy-tailed degree distribution (as illustrated in Fig. 2), and
the overall network will thus exhibit a heavy-tailed distribu-
tion, even for nonzero deletion rate c. However, as ¢ — 1, we
get [see Eq. (9)]: =,(8,+s,)(y,—1)7'=0. Thus, in the limit of
heavy node deletion, the degree distribution of any class ¢
with a finite size (s,>0) becomes exponential (i.e., y,—
for all g=1,...,0).

IV. HETEROGENEOUS STABILITY AND
RESPONSIVENESS

A universal compensatory protocol has been introduced
by the authors in [4], which ensures that the heavy tail of the
degree distribution of the emerging network is conserved
even in the limit of very high node departure rates. This
section will investigate the behavior of different classes of a
network of multiple types in the presence of (i) heteroge-
neous node deletion or equivalently, heterogeneous stability
factors, and (ii) heterogeneous responsiveness, i.e., the rate at
which different classes of nodes compensate for their lost or
dead links is class dependent. A class-dependent compensa-
tory mechanism is a generalization of the universal compen-
sation scheme in [4], and it plays a crucial role in restoring
the heavy-tailed structure of some or all of the classes in the
network.

The dynamical model introduced in Sec. II allows for
nonuniform deletion of nodes and compensation of links. For
simplicity we would assume uniform attraction, i.e., d;=d,
=-+-=dy=1, that is, all nodes accept all requests for connec-
tions. We let the other parameters s,, n,, c, be arbitrary. The
goal is to characterize the emerging scale-free state of each
of the Q subnetworks as a function of these dynamical pa-
rameters.

Rate equation formulation

A mean-field rate of change of k(i,7;g) can be written as
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Ik(i,t:q) _ mk(i,t;q) Ce(ln )k(i,t;q)
o L N
k(i,t3q) L(t;q") L(t;q4")
"L (§”¢1m>)(§CWMu¢J’

(10)

where (i) the first term comes from the contribution of the m
new links inserted at time step ¢ when L(7) is the sum of the
degree of all nodes of type g (remember that we assume
uniform preferential attachment); (ii) the second term cap-
tures the effect of the random deletion of one of the neigh-
bors of i which is compensated with n, preferentially tar-
geted new links (hence the 1-n, multiplier); and (iii) the
third term is due to the attraction of the compensatory links
from other nodes rather than i. It assumes that an average of
(e[ L(t;q")IN(t;4")]) links are deleted, of which a frac-
tion of L(t;q")/L(t) belongs to a particular class ¢’ and will
be compensated by n(’I preferentially targeted new links.

To find L(¢;q), its rate of change can be tracked as fol-
lows:

oLig) _ . Ltg) L(t;q)
a1 L) N(t;q)

_L(t;q)(zc L(t;q’)>(1 S L(t;q”)>
q' - q" ’

L(1) " N(t;q") S L(1)

—c (1 =n,)

where (i) the first term corresponds to the new links added to
the class ¢ if the new node happens to be of type ¢ (this
occurs with probability s,); (ii) the second term is due to the
end of new links being connected to a node of type ¢; (iii)
the third term comes from the deletion of an average of
L(t;q)/N(t;q) links if a node of type ¢ is deleted, which is
compensated by n, new links per lost link; and (iv) the fourth
term is similar to the third term in (11). In the steady state
one has L(t;q) =B,t, N(t:q)=(s,—c,)t, N(t)=(1-c)t. The Q
unknowns B, can thus be found through the following set of
Q equations (one for each g=1,2,...,0):

B c
B,=m|s,+ —% |- —4%—(1-n,)B
q q 9’749
qu sq_cq

!

q

B B_» Cn

- ——1 1—271(1!! 1 (2 1 Bqu).
EBq’ q,, EBq’ q,, S n—C,n

q ’

q

Finding B,’s and inserting back into (10), k(i,;q) is found to
be

k(i,t;q) = m(t/i)Pa, (11)

for B, as a function of By, cys 5y

2 nqqur
r

m c(l-n,) 4 cyByr

By=—- + > . (12
9 B S4—Cq B S S,—C4

nq’s as follows:

where B=Equ.
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Now defining D(i,;q) as the probability that a node of
type ¢ inserted at time i is still in the network at time ¢.
D(i,t;q) can be found as follows:

dD(i,t;q) : :

= c,D(i,t:q)IN(t:q) = = c,D(i,t;9)/(s, = c,)t,
resulting in D(i,1;q)=(1/i)"da<0.

Finally, P,(k), the degree distribution of the nodes of type
g can be found as follows:

No. of nodes of type g with degree =k

P, (k)=
Total number of nodes of type ¢

1
= > Nt;q)D(i,t;q)
N(t;Q) i:k(i,t;q)=k

k(i t;q)
i

-1

=D(i,1;q) (13)

i:k(i,t;q9)=k
Solving for i, such that k(i,7;g)=k from (11), and insert-
ing back into (13) we arrive at

Pq(k) o k—cq/[(.vq—cq)ﬁq]—llﬁq_l o« kY,

from which the power-law exponents are found to be

_Sq¢
Bq(sq - Cq) .

Finding the set of vy,’s requires the tedious task of solving
the system of equations (11) to find B,’s and then plugging
the B,’s back into (12) to get the B,’s and finally finding y,’s
through (14). Such procedures are carried out for a number
of examples in the next section.

Y=1+ (14)

V. PHASE DIAGRAMS AND TOPOLOGICAL
OBSERVATIONS

A. Phase diagrams

Previous sections suggest the procedure for calculating
the emergent power-law exponent of all the network classes
as a function of the model parameter, NgsCq»Sq- This in turn
can determine the state of all subnetworks of the network. An
example of such a procedure is carried out for two classes of
nodes with §,=0.8,5,=0.2,¢,=0.6,¢,=0.15 for various
compensation magnitudes 0<<n;,n,<2. Only the heavy-
tailed and light-tailed phases are marked and thus there are a
total of four possible phases for the whole network depicted
in Fig. 3.

Another interesting limit is where only one class compen-
sates for its lost links and the rest of the classes are irrespon-
sive. Consider the case of a mixture of two classes where the
first class with ¢;=0.8,5,=0.75 does not compensate (1,
=0). The phase regions of the second class with s,=0.25 are
depicted in Fig. 4 as a function of its deletion and compen-
sation rates (c,,n,).

B. Simulations

For a network of finite size, the variance of the degree
distribution is an indication of how heavy-tailed the degree
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FIG. 3. (Color online) Different regions of the power-law expo-
nents for an example consisting of two classes of nodes with s,
=0.8,5,=0.2,¢;=0.6,c,=0.15 for various compensation magni-
tudes 0<n;,n,<2. (i) Circles indicate the region in which the first
class is light tailed while the second class is heavy tailed; (ii)
squares indicate the phase where both classes are heavy tailed; (iii)
diamonds indicate where both classes are light tailed; and (iv) as-
terisks indicate that the first class is heavy tailed while the second
class is light tailed.

distribution is. Plotting the ratio of the variances at different
classes in the space of dynamical parameters will allow us to
compare the relative state of different network classes. We
have simulated a network of 5000 nodes with two categories
of nodes Q=2, with uniform deletion of magnitude ¢=0.5
and s;=s5,=0.5 for various compensation magnitudes n;,n,.
We have then plotted the ratio of the variances at each of the
classes for each value of (n,,n,) in Fig. 5.

Simulations to obtain power-law exponents for two
classes with equal insertion rates and various deletion rates
are depicted in Fig. 6 and verified against the analytical ex-
pectations.

20

x1072

15

100 _ 80 60 40 20 0
x1072 c,

FIG. 4. (Color online) Stable heavy-tailed minority class: The
majority class with 5,=0.75,¢,=0.7 is not compensating (n,=0).
The region of ny,c; where the minority class is stable and heavy
tailed (i.e., 2<vy,<3) is highlighted. The area to the left of the
region (for higher compensation rates) indicates y,>3 while the
area to the right indicates y, <2.
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FIG. 5. (Color online) The ratio of the variances of two classes
with ¢=0.5,5;=5,=0.5 as a function of the compensation magni-
tudes n;,n,. The variance of the degree distribution increases as the
compensation magnitude of the corresponding class increases.

C. Topological observations

As suggested in the Introduction, the class of nodes that
are more heavy tailed are expected to play more central roles
in the topology of the network. The light-tailed classes, on
the other hand, would be pushed to the edges of the network
serving as leaf nodes. This is a very desirable property for
many applications including P2P communication systems, as

32 T T T T T T

?;::)
¥ (pred)

sm) ]
.

28t ]

26+ ¥ . R

24 | v ”W".“d-””-" -

14 I 1 1 ! L !
03 04 05 06 07 08 09 1

qle,

FIG. 6. (Color online) The power-law exponent of a network of
two classes with 10 000 nodes. The insertion rates are s;=s5,=0.5,
and the overall deletion rate is a constant c=0.5. The deletion rate
of the two classes are different, however. For various ratios of the
deletion rates, the power-law exponent of these two classes is found
through simulation. Also depicted are the theoretical predictions of
the preceding section.

PHYSICAL REVIEW E 72, 026114 (2005)

G.,

FIG. 7. (Color online) The ratio of the capacities of the two
node categories. The network size is 10 000, s;=s,=1/2, and ¢
=1/2. The ratio of the deletion rates for the two categories are
varied from 0.3 to 1.0. The dashed line marks the transition of the
first category from a divergent phase into the phase with power-law
exponent greater than 2.

discussed in more detail in the following section. In this
section we try to quantify the place of a category of nodes in
the network.

The quantity we consider is the so-called capacity of each
subnetwork. For a node category g, the capacity C, is defined
as the total number of edges that have both their ends in a
node of type ¢, over twice the total degree of all the nodes of
type g. When C,=0, the category ¢ has all its edges to the
outside of the category g. When C,=1, all the links of the
nodes in category ¢ stay within the same category. One can
thus assume that a network with small capacity has a leaf
role, while a large capacity is an indication of a more com-
pact topological structure. Figure 7 depicts the capacities of
the two categories of a network of two categories as a func-
tion of the relative rate of deletion ¢;/c,. The more stable
subnetwork will have a larger capacity, which decreases as
C 1/ Cyr— 1.

VI. CONCLUDING REMARKS: APPLICATIONS
TO P2P NETWORKS

An important example of a complex, highly dynamic, and
heterogeneous network (which also partially motivated this
research) is the less structured or ad hoc distributed systems
with peer-to-peer (P2P) content-sharing networks as a prime
example. While nodes in a P2P computer network have het-
erogeneous resources and lifetimes, they can be classified
into a few meaningful classes based on hardware or software
characteristics. In particular, the nodes can be categorized
into two major classes [20]: supernodes with virtually infi-
nite bandwidth (e.g., office users) that run a supernode soft-
ware, and low-bandwidth home users that run the ordinary
software. The fraction of supernodes is extremely small
(around 1% of all nodes), but supernodes are much more
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stable, with their lifetimes ranging anywhere between 10 to
100 times that of the home users.

The integrity of such P2P networks requires most commu-
nication paths to be provided by the supernodes; otherwise,
the traffic at the home users will soon exceed their limits and
the network structure will be fragmented. This can be en-
sured only when the network core, that is, the highly con-
nected nodes in the network, are mostly supernodes (or
nodes with more capabilities). Ignorance of this fact has led
to the apparent breakdown in 2000 of the Gnutella network,
an early P2P file-sharing system [21].

The dynamics of P2P networks are dominated by the
rapid rate of the members joining and leaving the network.
More than 60% of all the nodes joining these networks will
leave within the first hour, while it takes around three months
for the overall size of the network to grow by 60% [21].
Ensuring the emergence of a heavy-tailed scale-free state in
such ad hoc environments is a challenging task. As was
shown in Sec. IV, the same compensatory mechanism devel-
oped in [4] can ensure the emergence of scale-free structures
with heavy tails among more stable groups (the groups an-
ticipated to be composed of nodes with high capacity), while
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the majority of the nodes will have a light-tailed degree dis-
tribution and are therefore exempted from the search paths.
The results of this paper will serve as an essential part of ad
hoc network formation protocols that can support efficient
search [12-14] and robustness, and allow highly dynamic
operations.

In conclusion, the structure of preferentially grown net-
works with heterogeneous preference kernels has tradition-
ally been categorized with a single parameter, namely the
power-law exponent of the overall scale-free degree distribu-
tion of the network, if such a scale-free state emerges. We
introduced a number of local rules that can tune the emergent
scale-free states of different classes and in particular can en-
sure heavy- or light-tailed distributions within a particular
class. These protocols dealt with four major dynamical ele-
ments of the network: the linkage properties of the network;
the rate of departure of the nodes in the network; the rate
with which nodes of a certain class ¢ compensate for the
links they lose; and the rate at which nodes accept requests
for connections or links. Different phases of the emergent
subclasses under these local rules were characterized, and the
boundaries of phase transitions were identified.
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